38 research outputs found

    Distributional little's law for queues with heterogeneous server interruptions

    Get PDF
    Distributional forms of Little's law relate the steady-state distributions of the number of customers in a queueing system (system content) and the time a customer spends in the system (delay). A new law for discrete-time multiserver queues is discussed, with single-slot service times, a first-come-first-served discipline and heterogeneous server interruptions

    Delay and partial system contents for a discrete-time G-D-c queue

    No full text
    We consider a discrete-time multiserver queueing system with infinite buffer size, constant service times of multiple slots and a first-come-first-served queueing discipline. A relationship between the probability distributions of the partial system contents and the packet delay is established. The relationship is general in the sense that it doesn't require knowledge of the exact nature of the arrival process. By means of the relationship, results for the distribution of the partial system contents for a wide variety of discrete-time queueing models can be transformed into corresponding results for the delay distribution. As a result, a separate full analysis of the packet delay becomes unnecessary
    corecore